
BIOL 211D, P1.3c 

 1

A Statistical Primer 
 

This primer will briefly answer the following questions.  You should read it in advance, bring 
questions about it to class, and consult it as you complete the statistical analysis worksheet. 

 

A. What is a population, what is a sample, and why do we need statistics? 
B. What is a statistical hypothesis? 
C. What does a statistical test actually do? 
D. How is a statistical test carried out? 
E. Do these tests assume anything about my data? 
F. What are the possible outcomes of the test? 
G. How are statistical results reported? 
H. Why does P give the probability of making an error, and why do we set = 0.05? 
I. What are one-tailed and two-tailed tests? 
 
A. What is a population, what is a sample, and why do we need statistics?   
 In research, we want to say something definitive about a population, but we have only a 
sample of the population.  Statistics provide a quantitative way to express confidence about a 
conclusion when we have only limited information from a sample. 
 As a first step, we try to make sure by our sampling method that our sample is 
representative of the population as a whole.  But what is “the population,” and what kind of 
sample is representative of it?   The answers depend on the question.  As an example, we might 
ask “do biology majors score higher than chemistry majors on their first organic chemistry 
exam?”  The “population” could include any and all biology or chemistry majors that are currently 
taking, have taken, or could take organic chemistry.  We could restrict the population of interest in 
various ways, for example, to students in the USA, or students at CofC, or students in their 
sophomore year, or students taking the course this year.  If we could measure every one of the 
students in that population, we could say definitively (without statistics) whether there is an 
average difference in scores between students in the two majors.  It is more realistic, however, to 
measure representative samples.  Then we can make a statement about the probability that the 
populations of the two types of majors differ based on (1) the sample means and (2) an estimate of 
confidence that our sample means represent the population means. 
 To choose a representative sample, we first try to avoid the potential for bias.  In most 
cases, sampling at random from a population helps to provide an unbiased sample of that 
population.  Students sampled at random from CofC, for example, would be an unbiased sample 
of students at CofC but could be a biased sample of students from the USA (if, for example, one 
of our programs were stronger than the other in an atypical way).  Second, we try to avoid the 
potential for statistical noise (or “sampling error”) by choosing a sample as large as practical, to 
reduce the possibility of getting a set of values in our sample that is atypical of the population.  
Avoiding bias and noise are two of the major issues in designing an experiment or survey. 
 Given a representative (unbiased and large) sample, we can then use inferential statistics 
to draw conclusions about the defined population.  In other words, we can generalize the results 
of analyzing a sample to a larger population that the sample appropriately represents. 
 
B. What is a statistical hypothesis?   
 Imagine a bar graph of average organic chemistry scores for biology and chemistry 
majors.  The two bars will differ in height—it is extremely unlikely that the averages will be 
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exactly the same.  But is this difference in means between samples large enough to conclude that 
the populations really differ?  To answer this question, we use sample data to determine how 
likely it is that the difference in means between samples could have been due to chance rather 
than to a real difference between populations. 
 

For any statistical test we define two alternative statistical hypotheses: 
 the null hypothesis (Ho): the result expected if there were no relationship between variables  
 the alternative hypothesis (Ha): the result expected if there were a predicted relationship 

between variables (either a difference between groups or a correlation between variables) 

Why do we bother setting up such formal alternatives?  The answer has to do with how science 
works, by a process called falsification: we assume by default that there is no relationship (the 
null hypothesis) unless we have strong enough evidence to reject the null.  This process reflects 
the conservative nature of science—we do not accept a new, alternative idea unless the evidence 
is highly convincing.  In fact, a typical criterion for “rejecting the null hypothesis in favor of the 
alternative”* is that the relationship must be so convincingly strong that it would occur by 
chance (that is, because of a chance sampling error) no more than 5% of the time.  [Stronger 
criteria are often applied where the cost of mistakenly rejecting the null hypothesis is high.  For 
example, because the costs of producing and marketing a new drug is high, we might choose to 
reject the hypothesis that the effects of a new drug differ from those of the current drug on the 
market if the difference would occur by chance no more than 1% of the time.  In that case, it 
might pay to be even more conservative.] 
 
C. What does a statistical test actually do?   
 For any statistical test, we start with a simple assumption.  We then evaluate whether 
there is strong enough evidence to reject this assumption. 
 

 Assumption: The null hypothesis is true. 
 

If the null hypothesis were true, we would expect that a test statistic calculated from the data (a 
measure of the strength of the relationship between variables) to equal zero: a null hypothesis 
states, for example, that there is no correlation (r = 0) or no difference between two group means 
(t = 0).  However, because we calculate a test statistic from just a limited (and therefore 
imperfect) sample of a population, it would not be surprising to get small differences from zero 
(positive or negative) in our test statistic just by chance, even if the null hypothesis were true.  
The question is, how large can the test statistic get before we begin to suspect that it is not due to 
chance (and that the null hypothesis, in 
fact, is probably not true?) 
 Imagine repeating the same data 
collection 1000 times, still assuming the 
null hypothesis is true.  Each time, you 
take a new sample from your population 
and calculate a new test statistic.  If you 
compiled all your test statistics, they 
would form a normal distribution 
centered at zero (see right).  Most values 
should be close to zero, and fewer would 
be extreme (large or small).  That is, 
there is a high probability of getting a 

0

 test statistic
t1 t2 t3 

Fig. 1.  Distribution of a test statistic given the 
assumption that the null hypothesis is true.  Note that 
the probability specified by  is distributed equally 
between the two tails (for a two-tailed test). 
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small value and a low probability of getting an extreme value, just by chance.  [Q: Statisticians 
can generate this probability distribution just by knowing the sample size.  How would you 
expect the width of the curve to change depending on the size of the samples used to calculate the 
test statistic?] 
 The problem is, in research you often have the result of only one such experiment.  So, 
what is the probability of getting the test statistic that you got (remember, assuming the null 
hypothesis is true) just by chance?  That probability (called the P-value) can be found by seeing 
where your test statistic falls on this distribution.  In Fig. 1, test statistic t2 falls a certain distance 
from 0, associated with a certain probability (P) of getting a value that extreme just by chance 
even if the null hypothesis were true.  The value t1 is closer to 0, so has a higher probability, 
while t3 is further from 0, so has a lower probability of occurring by chance assuming the null 
hypothesis were true.  Small test statistics have high probabilities of occurring by chance (and 
large P-values, see Section D), and large test statistics have low probabilities of occurring by 
chance (and low P-values), again assuming that the null hypothesis is true. 
 Because test statistics fall along a continuum, we need some way to say when our value is 
so extreme—that is, when it has such a small probability of having occurred by chance—that we 
question our assumption that the null hypothesis is true.  That criterion is based on  (alpha), a 
threshold probability value that we choose in advance.  We use that threshold to judge when we 
have enough evidence to reject our assumption that the null hypothesis is true.  When P < , we 
conclude that the probability of our large test statistic occurring by chance is too small to stick 
with the null hypothesis, and instead we reject the null hypothesis in favor of the alternative.  
Conversely, when P > we fail to reject the null hypothesis. 
 By convention in biology,  is usually set at 0.05 (see section I).  That is, we decide to 
reject the null hypothesis only when we expect a test statistic as large as ours no more than 5% 
of the time by chance.  In Fig. 1, the shaded areas under the curve together account for 5% of the 
distribution of test statistics expected by chance (each tail has 2.5% of the probability).  The 
critical value is the test statistic associated with the probability  = 0.05.  In this example, the 
critical value for our test is at t2, so anything equal to or larger than t2 (or equal to or smaller than 
–t2) provides enough evidence to reject our initial assumption that the null hypothesis is true. 
 
D. How is a statistical test carried out?   
Scientists have access to a dizzying array of statistical tests.  Fortunately, many simple analyses 
can be performed with knowledge of just three tests: the correlation analysis, the t-test, and the 
chi-square analysis.  Which test to use depends on whether the variables are continuous or 
categorical.  See APPENDIX 1 to determine when to use each of these tests. 

Regardless of which test is used, the procedure is similar:  
(1) calculate a test statistic,  
(2) compare the test statistic to the threshold critical value (found in a statistical table), 
(3) determine a P-value by comparing the test statistic to other values in the table, and 
(4) reach a conclusion to reject the null hypothesis only if P is less than alpha. 
 

Here are the details:  

 What is a test statistic?  A single value computed from your data.  For the three tests you 
will use in this class, the test statistics are r (for correlation analysis), t (for a t-test), and  
(for a “chi-squared” test).  Excel will calculate them or help you to calculate them. 
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 What is a critical value?  A threshold value that can be looked up in a table.  If your test 
statistic exceeds the critical value, then the data from which you computed the test statistic 
are highly different from what you would expect if the null hypothesis were true, so any 
relationship you found between variables is unlikely to be due to chance.   Critical values are 
tabulated based on the type of test, the degrees of freedom, and alpha. 

 What are the degrees of freedom?  A number based on the sample size of the data (see 
APPENDIX 2 for how to calculate df for each test).  Because larger samples give greater 
power to detect a relationship between variables, sample size affects the critical value. 

 What is alpha?  A probability value chosen before the data are analyzed.  Because the choice 
of alpha determines the critical value, it also acts as a threshold for decisions about the null 
hypothesis: when the probability of getting your results by chance is less than alpha (that is, 
your test statistic is greater than the critical value), the null hypothesis is rejected in favor of 
the alternative.  Alpha is typically set at 0.05 (see section H). 

 What is the P-value?  A probability value calculated from your data.  P is the probability that 
the relationship between variables measured from your sample is due to chance rather than to 
an actual relationship in the population.  It is also, therefore, the probability that you are 
making an error by rejecting your null hypothesis (see Section H). 

 
E. Do these tests assume anything about my data? 
Yes, but many tests work even with small violations of these assumptions, so we will not worry 
here about testing them.  The kinds of statistical tests you will use make just a few basic 
assumptions that are worth knowing about: 

 Data points are assumed to be independent of one another.  For example, when measuring 
scores on an organic chemistry exam, we assume that each student’s score is independent of 
the scores of other students (not always the case!). 

 Any statistical test fits the data to some kind of model, which is an ideal representation of 
how the data are patterned.  Real data points always deviate from the ideal model.  The size 
of those deviations (known as residuals) are assumed to have a normal (bell-shaped) 
distribution, with many more measurements close to the average and progressively fewer 
toward the tails.  This kind of distribution will be true for many types of data. 

 The t-test assumes that measurements for the two groups you are comparing have equal 
standard deviations.  If the standard deviations you calculated are not terribly different, you 
probably meet this assumption.  If they are terribly different, a version of the t-test is 
available that can account for this difference in standard deviations. 

 
F. What are the possible outcomes of the test? 
 Conventionally there are two possible outcomes: (a) failure to reject the null hypothesis, or 

(b) rejection of the null hypothesis in favor of the alternative hypothesis.  It is incorrect to 
state that the test leads acceptance of the null hypothesis or proof of either hypothesis. 

 Rejection of the null hypothesis does not necessarily imply a mechanism for the relationship.  
The effect could be due to some other mechanism you didn’t propose. 

 Rejection of the null hypothesis—a statistical outcome—does not necessarily mean that the 
effect has great biological significance.  As a biologist, it is still necessary to consider the 
magnitude of an effect when judging its biological importance. 
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G. How are statistical results reported?   
 To report the outcome of a statistical test, one states a conclusion along with the test 
statistic, degrees of freedom, and P-value (the latter three often in parentheses).  For example: 
 

 “There was no significant difference between the means of the two groups (t = 0.45, df = 
134, P > 0.05)”.   

H. Why does P give the probability of making an error, and why do we set = 0.05? 
We have established that the P-value is the probability of getting a test statistic as extreme as 
ours by chance if the null hypothesis were true.  If P is small enough (less than alpha), we decide 
to reject the null hypothesis in favor of the alternative.  But of course there is still some 
probability (given by P) that the null hypothesis is true and we just happened to get one of those 
extreme sampling errors.  The P-value is therefore a statement of confidence about a decision to 
reject the null.  For example, if the test concludes that P < 0.02, we have strong confidence that 
less than 2% of the time, with a test statistic as large as the one we calculated, we will be making 
an error by rejecting the null hypothesis. This type of error—rejecting the null hypothesis when it 
is in fact true, known as a “false positive”—is called a Type-1 error.  Alpha is therefore the 
upper limit on the type-1 error we are willing to tolerate when performing the test. 
 A second type of error, called a Type-2 error (or a “false negative”), involves failing to 
reject the null hypothesis when it is in fact false (in the whole population).  In science, we 
generally guard against Type-1 errors more than against Type-2 errors.  The reason is that 
science is conservative—it does not accept new ideas (alternative hypotheses) until there is 
strong evidence.  Setting  higher (e.g., 0.1) would lead to rejecting the null hypothesis more 
often, but with a higher number of false positives.  Setting  lower (e.g. 0.01) would reduce the 
false positives, but could make it unreasonably hard to reject the null hypothesis, and create more 
false negatives.  The value  = 0.05 is a compromise.  In some fields, however, a lower value for 
 is chosen because there are especially high costs of a Type-1 error.  For example, a 
pharmaceutical company might want especially strong evidence that a new drug works 
significantly better than the current drug before it invests millions of dollars in R&D.  It would 
set a low  = 0.01 in order to conservatively guard against concluding there is a real difference 
between drugs in case there isn’t. 
 
Note: information in section I is optional for this course, but will be interesting and useful for 
those who want to build their understanding of statistical testing.  
 
I. What are one-tailed and two-tailed tests?   
The example above describes null (H0) and alternative (Ha) hypotheses associated with a two-
tailed test.  Consider the goal of a t-test, which is used to test for a difference between means of 
two groups a (µa) and b (µb): 
 
 TWO-TAILED TEST 

Hypothesis In words In symbols 
H0 There is no difference between means of the two groups µa ≠ µb

Ha There is a difference between means of the two groups µa = µb 
 
 We use a two-tailed test when we make no strong prediction about which of the two 
means will be greater.  That is, either an extreme positive or negative test statistic would provide 
evidence to reject the null hypothesis (see Fig. 1 above). 
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 A one-tailed test is used instead when we have decided, before looking at the data, that 
we have a directional prediction: for a t-test, that the mean for group 1 is bigger (or smaller) than 
for group 2, or for a correlation analysis, that there is a positive (or negative) correlation between 
variables.  In this case, the null and alternative hypotheses are slightly different, as shown here 
for a t-test: 
 
 ONE-TAILED TEST 

Hypothesis In words In symbols 
H0 The mean of group a is not larger than the mean of group b  µa ≤ µb

Ha The mean of group a is larger than the mean of group b µa > µb 
 
Notice that the null hypothesis still expresses a null expectation (“is not”) but that the criteria 
now include less than or equal to, whereas the criterion for the alternative hypothesis is greater 
than.   The two hypotheses together must cover all possible outcomes, just as they did the two-
tailed test. 
 Which test you choose depends entirely on which prediction you make before the data 
are collected or analyzed.  When there is a directional prediction, the one-tailed test provides a 
key advantage: it gives greater power to reject the null hypothesis, because all of the probability 
 is now concentrated in one tail of the distribution.  As a result, the critical value for a one-
tailed test in Fig. 2 is t4, which is smaller (easier to exceed) than t2, the value that was associated 
with a two-tailed test.  Any value of your test-statistic falling between t4 and t2 would now lead 
you to reject your null hypothesis, which was not true for a two-tailed test. 
 
When stating a conclusion from either test, one should be true to the null and alternative 
hypotheses chosen before looking at the data.  That is, if one rejects the null hypothesis, the 
conclusion is exactly the alternative, and if one fails to reject the null, the conclusion is limited to 
the null.  This means, for example, that if you carry out a two-tailed test and reject the null 
hypothesis, you can conclude only that the means are not different, not that one is specifically 
larger than the other.  And if you carry out a one-tailed test and your test statistic falls in the 
opposite tail from where your alternative hypothesis predicted, you can only still fail to reject the 
null hypothesis.  If you want to test only the directional prediction, use a one-tailed test.

Fig. 2.  Distribution of a test statistic under the 
assumption that the null hypothesis is true.  Note that 
the probability specified by  is concentrated in only 
one tail (for a one-tailed test).

0

 test statistic
t1 t2 t3 t4 
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APPENDIX 1.  Which statistical test should I use? 
 

If you are 
testing the 
relationship 
between… 
 

use this 
test… 

 

to answer this question… involving these statistical 
hypotheses… 

to reach this kind of 
conclusion… 

2 continuous 
variables 

Correlation 
analysis 

Is there a statistical tendency 
for high measures of one 
variable to be associated with 
high (or low) measures of 
another variable?   

Ho : there is no association between 
variables 

Ha: there is an association (positive 
or negative) between variables 

If the association is stronger 
than is likely by chance, the 
variables are said to be 
significantly positively (or 
negatively) correlated. 

1 categorical 
variable & 
1 continuous 
variable 

t-test Is there statistical evidence that 
the mean of one group is 
significantly different from the 
mean of a second group?   

Ho : there is no difference in the 
average between groups 

Ha: there is a difference (positive or 
negative) in the average 
between groups 

If the difference between means 
(relative to the standard error) 
is more extreme than expected 
by chance, then the difference 
is said to be statistically 
significant. 

2 categorical 
variables 

Chi-square 
test 

Is there a statistical tendency to 
belong to a particular category 
in one variable if a subject 
belongs to a particular category 
in the other variable? 

Ho : there is no association between 
two categorical variables 

Ha: there is an association (positive 
or negative) between the two 
categorical variables 

If the association is stronger 
than is likely by chance, the 
variables are said to be 
significantly associated with 
one another. 

 
APPENDIX 2.  Test statistic, calculation of sample size and degrees of freedom for different tests 
 

Statistical test Test statistic Sample size Degrees of 
freedom 

Correlation 
Analysis 

r N = number of subjects with paired measurements of the two variables N–2 

t-test t N = total number of measurements taken in both groups N–2 
Chi-square test 2 N = total number of subjects measured 

C1 & C2 = number of categories in variables 1 & 2 
C1-1 x C2-1 

 


