Physical biology: life at small and large scales

What is viscosity?

Resistance to shear
among layers of
a sticky fluid
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depth
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http://www.youtube.com/watch?v=PhsmOc7Hb8Q&NR=1 3:08-6:22
http://www.youtube.com/watch?v=zAcwqYezI7A&NR=1 6:53-8:44

larvae are Sma“ and SlOW

Two forces influence motion
of an object through a fluid:

* inertia of the object
/ * viscosity of the fluid

Ksize «speed _ Reynolds
number

Viscosity

Fig. 10.5 Comparison of the direction of force
generated by (a) flagella and (b cilia.

A RANGE OF REYNOLDS NUMBERS

inertial

~ viscous

Whale swimming at 10 m/s 100,000,000
Fish swimming at 10 m/s 10,000,000
Duck flying at 20 m/s 100,000
Copepod burst swimming at 0.2m/s 100
Larva swimming at 1 mm/s 0.1
Sperm swimming at 0.2 mm/s 0.01
Bacterium swimming at 0.01 mm/s 0.00001

from Vagel (1994)
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Copepod Thrips
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http://www.youtube.com/watch?v=zAcwgYezI7A&NR=1 6:53-8:44




1. How are early life cycle stages influenced by
environmental temperature? a) Larval swimming &

(Podolsky and Emlet 1993) physiology \ water movement
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MANIPULATION OF VISCOSITY

INDEPENDENT OF TEMPERATURE 1) larval swimming
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most organisms are Small ana Slow
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“Protista”
(single-celled eukaryotes)

Figure 11.5 An estimate of the phylogeny of all living organisms This tree is based on the analysis of nucleotide se-
quences of small subunit rRINAs, From Woese (1996).
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smaller ciliated parts




2. How have hydrodynamic forces selected for variation

in the morphology of intertidal sea urchins?
(Denny and Gaylord 1996)

Echinometra

Colobocentrotus

wave-swept intertidal areas

) protected intertidal areas

Fignre 813 Estimates of the

number = 10" see Denny and

Gaylord 1996). The added mas
L the ac-

celeration reaction experienced

by urchins. Based on the data and

st i Denny and Gaylord

forces experienced by sea
urching of different shapes
The drag and lift coeffic
reported here characterize the
drag and lift experienced by
urchins at a water velocity typical
of the intertidal {Reynoldy

of dislodgment?
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Fig. 4.24 When the size of an object is increassd
isometrically, the ratio of frontal 1o attachment
area is constant. As a result, the ratio of drag

to strength is constant. In contrast. volume
increases faster than attachment area, and the
ratio of accelerational force 1o strengih increases.
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Q: What forces do sea
urchins experience?

Fignre 8.11 Two species of inter-

tidal sea urchin Redrawn from

Ei mathaei  Colobocentrotus atratus  Denny and Gaylord (1996).
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Fig. 421 An upeight cylis
expenences 3 dr

Figure 8.12 Three forces expe-
rienced by an urchin clinging to
a rock in the intertidal zone

(a) Drag. The fine arrows represent
the flow of water around the urchin
The large arrow indicates the direc-
tion of the ner force due ro drag.

(b) Lift. The fine arrow represents
the fow of water over the top of the
icates the

urchin. The large arrow i
direction of the net force due to lift.
{c) The acceleration reaction. The P%
represent the pressure in water thac
is accelerating over the urchin from
upstream to downstream, Bigger P
indicate higher pressure. The large
arrow indicates the direction of the
net force due to the acceleration re-
action. See texe for deails



